
Author: Dammian Miller

How Fujitsu Racing is super-charging
its OpenCMS performance

• From an island called Australia

• Web developer for 10+ years - Java focus, government, corporate, private,
consulting

• OpenCMS since 2005

• Implemented a number of small and large projects using OpenCMS, notably:

• Australia's leading loyalty program website

• Australia's leading department store members site

• Fujitsu Racing V8 Supercars team website

• And a blatant product placement - my company's fully managed multi-
site OpenCMS offering

• OpenCMS evangelist

About me

Here to introduce the open-source OpenCMS HighPerf module

But before I do, a brief history leading to its creation.

Once upon a time...

Business Case:
Fujitsu Racing
V8 Supercars
Team Website

Complex site comprising
many components :

• News

• Events

• Merchandise

• Image Gallery

• Video Gallery

• Form

• Edit areas

• RSS feeds

OpenCMS powered V8 Supercars

The client - delivery requirements

• Trackside update of news, image and video gallery

• Fine-grained user permissions

• Sub-2 second initial browser display - HTML delivery

• Sub 8 second until completion time

• Performance to be delivered at up to 100 concurrent users

• Delivered yesterday

Heard that before - OpenCMS is my choice, again,
however...

• A rule of thumb - the more flexible the software, the slower it
will be

• More calls to data sources

• Local - datastore - low latency

• Remote - RSS feeds, web services - high latency

• Data aggregation and formatting requires additional steps

• The slower a system, the less it will scale as existing
resources are unavailable for longer

OpenCMS - highly dynamic software

With great power comes great responsibility...and system requirements

How we made OpenCMS lightning fast

Decision criteria:

• Local audience - Content Delivery Network (CDN) == overkill

• Time constraint - due in 2 weeks

• Limited budget - more hardware not an option

We chose to implement a reverse proxy cache/HTTP cache in
front of our Tomcat + Apache web stack.

• HTTP Cache sits in front of traditional HTTPD server or
the application server taking over as the client
connection point

• Populates cache from backend HTTPD or application
server directly

• Serves cached pages from memory - optimised

• more efficient with system resource use for each
connection - more connections for the same resource
usage

What is a reverse proxy cache/HTTP Cache?

Apache Tomcat

Apache HTTPD

Customer
Web

Browser

Database

Typical OpenCMS Stack

Customer
Web

Browser

Apache HTTPD

Apache Tomcat

Database

Varnish HTTP Cache

Typical OpenCMS Stack
with Varnish HTTP Cache

• Non-invasive - no code changes

• Field tested - proven technology

• Works with static and dynamic content

• Quick to implement - 30 minutes setup time

• FAST - It is much more efficient to serve pages from optimised
cache memory without web or application server overheads

• Efficient - increased system capacity due to efficiencies gained
from bypassing web and application server overheads

• Potential for reduced hardware requirements - $ savings

Why choose a HTTP Cache?

• Commercially-backed Free Open-Source Software (FOSS)

• Optimised HTTP cache, not jack of all trades

• Highly configurable via internal domain configuration language
- VCL

• VCL supports RegEx., inline C

• Multiple backend support with programmable routing using VCL

• No SSL support

• Supports Edge-Side Includes (ESI) - more on this later

Varnish Cache - HTTP cache extraordinaire

• Simple indicative test - not real-world

• UAT system

• LAN-based test - not real-world

• Synthetic benchmarks using Apache Bench

• ab -c 100 -n 1000

• Test scenario - 100 concurrent users repeated 1000 times

Varnished OpenCMS Fujitsu Racing - the numbers

Supercharging...start your engines!

1

10

100

1000

10000

Varnish Apache Tomcat

11,24110,063

60

14
23

4,026

pages/sec Delivery Time (ms)

So we have our speed, but now we need to pay the price
- content freshness - dynamism

• HTTP cache is unaware of when backend
content is updated

• Content refresh is time-based

• Different content types or paths can have
different expiry times. Vendor-dependent
implementation and capabilities

How we made OpenCMS lightning fast
- without sacrificing dynamism

• Vendor independent HTTP PURGE request type. Tells HTTP cache to purge requested
resource from cache

• Triggered on publish event

• Next resource request results in a cache miss - HTTP cache will request and return fresh
resource from web/application server

• Enables HTTP cache benefits without sacrificing content freshness with time-based
purge/refresh policies.

• Memory-based content lookup and delivery - fast

• Optimised system resource use

• Increased system capacity

OpenCMS HighPerf - PURGE on publish

OpenCMS HighPerf information

• OpenCMS self-contained module including all dependencies

• LGPL license

• Source code contained within module including all dependency
modifications

• Self-signed certificates need to be added to local JSSE certificates
store

• Extra parameter to tell OpenCMS HighPerf to allow self-signed
certificates - not recommended for production environments

• -Dau.com.melbournebusinessonline.opencms.publish.allowSelfSigned

Future Directions - Enterprise capabilities

Cluster awareness

• Enable purging to multiple backends behind a single domain

• We can achieve this using the OpenCMS site aliases.
Limitations?

• Purge piping via a single HTTP cache in front of a cluster of HTTP
caches?

Future Directions - Edge Side Includes (ESI)

ESI - Edge Side Includes

• Ratified HTTP cache specification - vendor independent

• Enables HTTP cache to cache individual page components

• assemble page from components

• Only purge components that have changed

• Fine granularity compared to page-level caching

• Supports compression

Future Directions - Edge Side Includes (ESI)
- page components

Header

Navigation
Race schedule

Advertising

Video Gallery

News
Merchandise

Driver Info
Series Standings
Newsletter Form

Events
Image Gallery

Footer

Future Directions - Edge Side Includes (ESI) - Implementation

• Implement via template mechanism

• Potentially no OpenCMS changes required

• Requires explicit re-coding of site template to utilise ESI

• Relies on ESI support or fails?

• Implement via OpenCMS FlexCache

• Requires OpenCMS modifications

• Does not rely on ESI enablement - only enables if ESI support present

• Transparent enabling for all existing site templates

• Other methods - ADE?

Initial investigation has revealed the following implementation methods:

OpenCMS HighPerf - where to get it?

Get OpenCMS HighPerf from the following URL. Be sure
to check back for updates and future modules!

• http://MelbourneBusinessOnline.com.au

Questions & Answers, Feedback & Suggestions

• Dammian Miller

• Melbourne Business Online

Thank you for attending

