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How Fujitsu Racing is super-charging 
its OpenCMS performance



• From an island called Australia

• Web developer for 10+ years - Java focus, government, corporate, private, 
consulting

• OpenCMS since 2005

• Implemented a number of small and large projects using OpenCMS, notably:

• Australia's leading loyalty program website

• Australia's leading department store members site 

• Fujitsu Racing V8 Supercars team website

• And a blatant product placement - my company's fully managed multi-
site OpenCMS offering

•  OpenCMS evangelist

About me



Here to introduce the open-source OpenCMS HighPerf module

But before I do, a brief history leading to its creation.

Once upon a time...



Business Case:
Fujitsu Racing 
V8 Supercars
Team Website

Complex site comprising 
many components :

• News

• Events

• Merchandise

• Image Gallery

• Video Gallery

• Form

• Edit areas

• RSS feeds

OpenCMS powered V8 Supercars



The client - delivery requirements

• Trackside update of news, image and video gallery

• Fine-grained user permissions

• Sub-2 second initial browser display - HTML delivery

• Sub 8 second until completion time

• Performance to be delivered at up to 100 concurrent users

• Delivered yesterday

Heard that before - OpenCMS is my choice, again, 
however...



• A rule of thumb - the more flexible the software, the slower it 
will be

• More calls to data sources

• Local - datastore - low latency

• Remote - RSS feeds, web services - high latency

• Data aggregation and formatting requires additional steps

• The slower a system, the less it will scale as existing 
resources are unavailable for longer

OpenCMS - highly dynamic software

With great power comes great responsibility...and system requirements



How we made OpenCMS lightning fast

Decision criteria:

• Local audience - Content Delivery Network (CDN) == overkill

• Time constraint - due in 2 weeks

• Limited budget - more hardware not an option

We chose to implement a reverse proxy cache/HTTP cache in 
front of our Tomcat + Apache web stack.



• HTTP Cache sits in front of traditional HTTPD server or 
the application server taking over as the client 
connection point

• Populates cache from backend HTTPD or application 
server directly

• Serves cached pages from memory - optimised

• more efficient with system resource use for each 
connection - more connections for the same resource 
usage

What is a reverse proxy cache/HTTP Cache?
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Typical OpenCMS Stack
with Varnish HTTP Cache



• Non-invasive - no code changes

• Field tested - proven technology

• Works with static and dynamic content

• Quick to implement - 30 minutes setup time

• FAST - It is much more efficient to serve pages from optimised 
cache memory without web or application server overheads

• Efficient - increased system capacity due to efficiencies gained 
from bypassing web and application server overheads

• Potential for reduced hardware requirements - $ savings

Why choose a HTTP Cache?



• Commercially-backed Free Open-Source Software (FOSS)

• Optimised HTTP cache, not jack of all trades

• Highly configurable via internal domain configuration language 
- VCL

• VCL supports RegEx., inline C

• Multiple backend support with programmable routing using VCL

• No SSL support

• Supports Edge-Side Includes (ESI) - more on this later

Varnish Cache - HTTP cache extraordinaire



• Simple indicative test - not real-world

• UAT system

• LAN-based test - not real-world

• Synthetic benchmarks using Apache Bench 

• ab -c 100 -n 1000 

• Test scenario - 100 concurrent users repeated 1000 times 

Varnished OpenCMS Fujitsu Racing - the numbers



Supercharging...start your engines!
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So we have our speed, but now we need to pay the price
- content freshness - dynamism

• HTTP cache is unaware of when backend 
content is updated

• Content refresh is time-based

• Different content types or paths can have 
different expiry times.  Vendor-dependent 
implementation and capabilities 



How we made OpenCMS lightning fast 
- without sacrificing dynamism

• Vendor independent HTTP PURGE request type.  Tells HTTP cache to purge requested 
resource from cache

• Triggered on publish event

• Next resource request results in a cache miss - HTTP cache will request and return fresh 
resource from web/application server

• Enables HTTP cache benefits without sacrificing content freshness with time-based 
purge/refresh policies. 

• Memory-based content lookup and delivery - fast

• Optimised system resource use

• Increased system capacity

OpenCMS HighPerf - PURGE on publish



OpenCMS HighPerf information

• OpenCMS self-contained module including all dependencies

• LGPL license

• Source code contained within module including all dependency 
modifications

• Self-signed certificates need to be added to local JSSE certificates 
store

• Extra parameter to tell OpenCMS HighPerf to allow self-signed 
certificates - not recommended for production environments

• -Dau.com.melbournebusinessonline.opencms.publish.allowSelfSigned



Future Directions - Enterprise capabilities

Cluster awareness

• Enable purging to multiple backends behind a single domain

• We can achieve this using the OpenCMS site aliases.  
Limitations?

• Purge piping via a single HTTP cache in front of a cluster of HTTP 
caches?



Future Directions - Edge Side Includes (ESI)

ESI - Edge Side Includes

• Ratified HTTP cache specification - vendor independent

• Enables HTTP cache to cache individual page components

• assemble page from components

• Only purge components that have changed

• Fine granularity compared to page-level caching

• Supports compression



Future Directions - Edge Side Includes (ESI)
- page components

Header

Navigation
Race schedule

Advertising

Video Gallery

News
Merchandise

Driver Info
Series Standings
Newsletter Form

Events
Image Gallery

Footer



Future Directions - Edge Side Includes (ESI) - Implementation

• Implement via template mechanism

• Potentially no OpenCMS changes required 

• Requires explicit re-coding of site template to utilise ESI

• Relies on ESI support or fails? 

• Implement via OpenCMS FlexCache

• Requires OpenCMS modifications

• Does not rely on ESI enablement - only enables if ESI support present

• Transparent enabling for all existing site templates

• Other methods - ADE?

Initial investigation has revealed the following implementation methods:



OpenCMS HighPerf - where to get it?

Get OpenCMS HighPerf from the following URL.  Be sure 
to check back for updates and future modules!

• http://MelbourneBusinessOnline.com.au



Questions & Answers, Feedback & Suggestions

• Dammian Miller

• Melbourne Business Online

Thank you for attending


