Do you speak .. Integration of other scripting languages than JSP

By Sebastian Himberger

@ 0pencmst DAYS

Advantages & Motivation / Why the heck?

* Integration of existing work easier
e Shorter turnaround time
« Change & add classes / scripts without application restart

* Bring in non Java developers

* More fun :)

It may have dis-
advantages too :)

Types of integration / How the heck ?

 Writing scripts to create content (like JSPs)
» Writing other things like e.g. scheduled tasks

 Stuff | haven't (yet) thought about (which could include DSLs,
validation rules, widget default / select values)

How to approach this stuff... (we need a plan)

 Pick a language

» Choose how to invoke
« Servlet dispatch (JSP like)
 Direct execution

* Implement resource type

 Implement resource loader

Architectual Overview: OpenCms Resource Types & Loaders

Used for writing and reading Used for displaying and
the resource exporting the resource
Associated through the
Resource Type - resource loader ID Resource Loader
(Java Class) (Java Class)
A

Associated through editor
configuration file (VFS)

A
Editor Flex Module
(Workplace) Flex Cache
-) Used for caching
' and dispatching to JSPs

(Servlets)

The Flex Module

 Consists of wrappers for the Servlet classes (Request , Response,
RequestDispatcher) to save generated output & VFS awareness

A controller which is attached as request attribute to pass through the
CmsQObject (this is where the context is stored)

 Qutput is stored in a special Entry-Class

* Include calls are stored special so that you can mix static and
dynamic cached content:

An example entry:

Static content Flex Module

Include call Flex Cache
Include params

Static content

The Resource Loader (I CmsResourcelLoader)

 byte[] dump(cms, resource, elem, locale, req, res)
* byte[] export(cms, resource, req, res)

« void load(cms,resource,req,res)

* void service(cms,resource,req,res)

« .. methods to indicate if usable for export etc. ...

Resource Loader
(Java Class)

Request Flow of a JSP (1/2)

Resource Loader

#load(...)

» Check if bypass is set

 Create or get Controller &
Flex wrappers

* Dispatch to JSP

» #dispatchJSP(...)

Resource Loader

» Create RequestDispatcher
(Flex wrapper)

e Call include(...) method

« If static export return content

* If on demand or normal write
output to response

>FIexRequestDispatcher

#include(...)

* Include external using real
Dispatcher

* Include internal w/o cache

* Include internal w. cache

« Calls back to the service(...)
method if not cached

Request Flow of a JSP (2/2)

Resource Loader

—> #service(...) > JSP Servlet

« Update JSP and » Handle the request
dependencies

* Dispatch to external JSP
using normal RD

» Ouput is written to the
Response wrapper buffer

Needed pieces for content generation (dispatch invocation)

« Most of the process is generic

* If repository used the repository and the file suffix differs
« We have to ensure that the repository can be purged

* Dependency / include management depends on the used language
« We have to ensure that includes / dependencies are updated correctly

 Path translation is dependant on the integrated language

 The invoked Servlet differs

Needed pieces for content generation (dispatch invocation)

CmsScriptResourceType

CmsScriptLoader

CmsScriptingUtil

Represents a script file
Subclasses associate custom loader

Performs generic loading
Subclasses provide suffix and ensure
dependencies / RFS copies, CRE stuff

Listens to OpenCms Events
Loops through loaders and urges them to
purge repository

Generally useful methods
Path computations, file checking, etc.

PHP Integration: An example — What does it look like
<%@ taglib prefix="cms" uri="http://www.opencms.org/taglib/cms" %>
<cms:include property="“template“ element=*head’/>

<cms:include file="productSearch.php" />

<cms:include property="“template“ element="“foot*/>

You now get navigation, templating and caching from OpenCms ... you can even
manage your PHP application via OpenCms

PHP Integration: An example - overview

* Integration follows the dispatched invocation model

« PHP scripts are stored in a separate RFS repository (,WEB-INF/php*)
» PHP is executed by a Servlet (Quercus — it's beta but pretty(!) useable)
« PHP uses functions like ,include(...)* and ,require(...)“ for inlcusion

* Not (yet) usable for replacing JSP Templates — not sure if desireable

PHP Integration: An example — loading & dependencies

PHPScriptLoader
(extends CmsScriptLoader)

¢

provides translated content & List of includes

instantiates

PHPIncludeParser

PHPPathTranslationVisitor |

calls back

PHPIncludeCollectingVisitor —

Process is recursive (as in JSP integration) to catch transitive includes
(includes of includes of includes of includes of includes ... :))

PHP Integration: An example — deployment

* Import PHP and Scripting module (brings in resource type)

* Register ResourcelLoader in config/opencms-vfs.xml
<resourceloaders>

<loader class="net.sf.ocmscript.php.CmsPHPScriptLoader" />
</resourceloaders>

» Assign editor /system/workplace/editors/simple/editor_configuration.xml
<editor>
<resourcetypes>
<type>
<name>php</name>

<ranking>0</ranking> a custom resource type + editor:
<mapto>php</mapto> These are the hooks!
</type>

</resourcetypes>...

If you ever need to integrate

Further examples: Scheduled jobs with Groovy
« A GroovyVFSExecutor is used to execute a script in the VFS
« The CmsObject and the parameters are bound to the script

« Just create a script file in the VFS

import org.opencms.maln.¥*

sessionManager = OpenCms.getSessionManager ()
sessionManager.sendBroadcast (cms, params ['message'])

New Integrations: Steps to perform

« Write a custom loader (for content generation)
» Think of include / dependency management
» Create a Servlet for executing the script

« Write a custom resource type (for content generation)
« Think of preparsing the code on read / write operations
« Associate it with an editor

» Think of script execution and variable binding
» Which variables should be available to the scripts, what to use
the scripts for anyway

« Create a module containing your classes

New Integrations: Pitfalls

» Dispatched Servlet does commit the response
» For example calls #flushBuffer()
» Override #isAlwaysCommited() in your loader

 Dispatched Servlet does not throw a ServietException on error
» Rewrite or wrap the Servlet. The OpenCms error handling
mechanism has to be invoked to display error screens

* Most OpenCms Libraries do need a JSP PageContext
» Create a PageContext in the executing Servlet if you want to e.g.
use the CmsdspActionElement class in your scripts (not done for PHP)

Status & future outlook

 PHP & Groovy integrations are useable but need some testing
* Refine current integrations

* Integrate with core if needed

* Think of new ways to use scripts in OpenCms

* Develop in the open

That's it :) - Thanks very much

Visit https://sourceforge.net/projects/ocmscripting/ for source code

https://sourceforge.net/projects/ocmscripting/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20

